您當前所在的位置:首頁 > 工程項目  

B超的工作原理

來源:環保設備     添加時間:2022-12-16 09:33:30

一、B超的工作原理

超聲類儀器都是利用超聲回波法去確定各種組織和器官的位置,因為不同的組織能造成超聲的衰減,反射回來的超聲波就不一樣。哪到底怎樣產生和接收超聲波呢,正壓電效應和逆壓電效應能實現超聲波和機械波的轉換。超聲探頭里有換能器、放大電路、轉換開關、相位調整、控制補償等電路,可以對超聲波進行預處理。

醫用超聲儀器可以分為A、B、M、D超等,B超可以實現二維圖像顯示,B 型是亮度調制型(Brightness Mode),簡稱為 B 超。借助于換能器或波束的運動,超聲波束掃過一個斷面,回波信息顯示成一幅斷面圖像,因此也稱斷面顯像儀。斷面圖像與人體解剖位置有直接對應的特點,所以 B 超已經成為超聲圖像診斷中的主要手段。

二、b型超聲診斷儀的成像原理是什么

B型超聲,簡稱B超。是指發射超聲波給物體,將回聲信號顯示為光點,回聲的強弱以點的灰(亮)度顯示,然后記錄物體的回波,根據回波的變化,判斷物體的存在變化情況。它將從人體反射回來的回波信號以光點形式組成切面圖像。此種圖像與人體的解剖結構極其相似,故能直觀地顯示臟器的大小、形態、內部結構,并可將實質性、液性或含氣性組織區分開來。

三、超聲波探傷儀的工作原理是什么

超聲波在被檢測材料中傳播時,材料的聲學特性和內部組織的變化對超聲波的傳播產生一定的影響,通過對超聲波受影響程度和狀況的探測了解材料性能和結構變化的技術稱為超聲檢測。超聲檢測方法通常有穿透法、脈沖反射法、串列法等。數字式超聲波探傷儀現在通常是對被測物體(比如工業材料、人體)發射超聲,然后利用其反射、多普勒效應、透射等來獲取被測物體內部的信息并經過處理形成圖像。多普勒效應法是利用超聲在遇到運動的物體時發生的多普勒頻移效應來得出該物體的運動方向和速度等特性;透射法是通過分析超聲穿透過被測物體之后的變化而得出物體的內部特性的,其應用目前還處于研制階段;反射法超聲波探傷儀這里主要介紹的是目前應用最多的通過反射法來獲取物體內部特性信息的方法。反射法是基于超聲在通過不同聲阻抗組織界面時會發生較強反射的原理工作的,正如我們所知道,聲波在從一種介質傳播到另外一種介質的時候在兩者之間的界面處會發生反射,而且介質之間的差別越大反射就會越大,所以我們可以對一個物體發射出穿透力強、能夠直線傳播的超聲波, 超聲波探傷儀 然后對反射回來的超聲波進行接收并根據這些反射回來的超聲波的先后、幅度等情況就可以判斷出這個組織中含有的各種介質的大小、分布情況以及各種介質之間的對比差別程度等信息(其中反射回來的超聲波的先后可以反映出反射界面離探測表面的距離,幅度則可以反映出介質的大小、對比差別程度等特性),超聲波探傷儀從而判斷出該被測物體是否有異常。 在這個過程中就涉及到很多方面的內容,包括超聲波的產生、接收、信號轉換和處理等。其中產生超聲波的方法是通過電路產生激勵電信號傳給具有壓電效應的晶體(比如石英、硫酸鋰等),使其振動從而產生超聲波;而接收反射回來的超聲波的時候,這個壓電晶體又會受到反射回來的聲波的壓力而產生電信號并傳送給信號處理電路進行一系列的處理,超聲波探傷儀最后形成圖像供人們觀察判斷。這里根據圖像處理方法(也就是將得到的信號轉換成什么形式的圖像)的種類又可以分為A型顯示、M型顯示、B型顯示、C型顯示、F型顯示等。A型顯示是將接收到的超聲信號處理成波形圖像,根據波形的形狀可以看出被測物體里面是否有異常和缺陷在那里、有多大等, 超聲波探傷儀主要用于工業檢測;M型顯示是將一條經過輝度處理的探測信息按時間順序展開形成一維的空間多點運動時序圖,適于觀察內部處于運動狀態的物體,超聲波探傷儀如運動的臟器、動脈血管等;B型顯示是將并排很多條經過輝度處理的探測信息組合成的二維的、反映出被測物體內部斷層切面的解剖圖像(醫院里使用的B超就是用這種原理做出來的),超聲波探傷儀適于觀察內部處于靜態的物體;C型顯示、F型顯示現在用得比較少。超聲波探傷儀檢測不但可以做到非常準確,而且相對其他檢測方法來說更為方便、快捷,也不會對檢測對象和操作者產生危害,所以受到了人們越來越普遍的歡迎,有著非常廣闊的發展前景。

四、超聲波的作用及原理?

超聲波頻率高、波長短,他可以像光那樣沿直線傳播,使得我們有可能向某已確定方向上發射超聲波,聲波是縱波,可以順利地在人體組織里傳播。 超聲波遇到不同的介質交接面時會產生反射波.

聲波是屬于聲音的類別之一,屬于機械波,聲波是指人耳能感受到的一種縱波,其頻率范圍為16Hz-20KHz。當聲波的頻率低于16Hz時就叫做次聲波,高于20KHz則稱為超聲波聲波。

在全球,超聲波廣泛運用于診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬于超聲波治療學的運用范疇。

(一)工程學方面的應用:水下定位與通訊、地下資源勘查等

(二)生物學方面的應用:剪切大分子、生物工程及處理種子等

(三)診斷學方面的應用:A型、B型、M型、D型、雙功及彩超等

(四)治療學方面的應用:理療、治癌、外科、體外碎石、牙科等

超聲波的作用

玻璃零件.玻璃和陶瓷制品的除垢是件麻煩事,如果把這些物品放入清洗液中,再通入超聲波,清洗液的劇烈振動沖擊物品上的污垢,能夠很快清洗干凈.

雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波“導航”、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什么在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的“雷達站”。蝙蝠正是利用這種“聲吶”判斷飛行前方是昆蟲,或是障礙物的。而雷達的質量有幾十,幾百,幾千千克,,而在一些重要性能上的精確度.抗干擾能力等,蝙蝠遠優與現代無線電定位器.深入研究動物身上各種器官的功能和構造,將獲得的知識用來改進現有的設備,這是近幾十年來發展起來的一門新學科,叫做仿生學.

我們人類直到第一次世界大戰才學會利用超聲波,這就是利用“聲吶”的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然后記錄與處理反射回聲,從回聲的特征我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以后到了60年代醫生們開始將超聲波應用于腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。

聲吶與雷達的區別

聲吶通過超聲波

雷達通過無線電波

醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,并且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特征來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。

目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。

A型:是以波形來顯示組織特征的方法,主要用于測量器官的徑線,以判定其大小??捎脕龛b別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。

B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前后對比,所以廣泛用于婦產科、泌尿、消化及心血管等系統疾病的診斷。

M型:是用于觀察活動界面時間變化的一種方法。最適用于檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用于輔助心臟及大血管疫病的診斷。

D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法??纱_定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速?,F在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,并且還可以與其他檢查儀器結合使用,使疾病的診斷準確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福于人類。

研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理制成的電動超聲發生器、

以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應制成的電聲換能器等。

超聲效應 當超聲波在介質中傳播時,由于超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生

一系列力學的、熱學的、電磁學的和化學的超聲效應,包括以下4種效應:

①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由于超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。

②空化作用。超聲波作用于液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶于液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體“撕開”成一空洞,稱為空化??斩磧葹橐后w蒸氣或溶于液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,并在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。

③熱效應。由于超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。

④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理后產生過氧化氫;溶有氮氣的水經超聲處理后產生亞硝酸;染料的水溶液經超聲處理后會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理后,特征吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。

超聲應用 超聲效應已廣泛用于實際,主要有如下幾方面:

①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用于超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件制造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相干的超聲波:一束透過被研究的物體后成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。

②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鉆孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。

③基礎研究。超聲波作用于介質后,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,并在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大于固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種準粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——

聲波是屬于聲音的類別之一,屬于機械波,聲波是指人耳能感受到的一種縱波,其頻率范圍為16Hz-20KHz。當聲波的頻率低于16Hz時就叫做次聲波,高于20KHz則稱為超聲波聲波。

超聲波具有如下特性:

1) 超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。

2) 超聲波可傳遞很強的能量。

3) 超聲波會產生反射、干涉、疊加和共振現象。

4) 超聲波在液體介質中傳播時,可在界面上產生強烈的沖擊和空化現象。

超聲波是聲波大家族中的一員。

聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊后,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。

超聲波是指振動頻率大于20KHz以上的,人在自然環境下無法聽到和感受到的聲波。

超聲波治療的概念:

超聲治療學是超聲醫學的重要組成部分。超聲治療時將超聲波能量作用于人體病變部位,以達到治療疾患和促進機體康復的目的

英國有超聲波。

 


環保設備 備案號: 滇ICP備2021006107號-303 版權所有:蓁成科技(云南)有限公司     網站地圖
    本網站文章僅供交流學習,不作為商用,版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除。

怀孕巨大肚子的视频