您當前所在的位置:首頁 > 企業動態  

全站儀屬于測繪儀器里的那一項

來源:環保設備     添加時間:2022-12-08 08:34:06

一、全站儀屬于測繪儀器里的那一項

你這分類表出自何處???也太不科學了吧?看看下面的分類還差不多:

測繪儀器分類一覽表

GPS:RTK、靜態GPS、信標機、手持GPS

全站儀:全站儀

測距儀:手持測距儀、紅外測距儀、激光測距儀、測距望遠鏡

經緯儀:電子經緯儀、光學經緯儀、激光經緯儀、游標經緯儀(淘汰)

水準儀;自動安平水準儀、氣泡式水準儀、數字水準儀

激光儀器:投線儀、掃平儀、垂準儀、指向儀

反射棱鏡:棱鏡組、對中桿棱鏡、迷你棱鏡、棱鏡配件

測繪附件:腳架、塔尺、對中桿、花桿、測繩、測傘、鋼卷尺、小鋼尺、皮卷尺、銦鋼尺、水準尺、條碼尺、尺墊、中螺絲、垂球、

儀器配件:傳輸電纜、聯接器、彎管目鏡、太陽鏡、充電器、電池、箱子、電池盒、

測繪軟件:成圖、地籍、房產、GIS、平差、精靈、矢量化、國土OA、土地利用、產權產籍、控制測量、行業測量、數據記錄、

PDA:PC-E500、記錄本機載存儲卡

全站儀:全站型電子測距儀

全站儀兼具了“經緯儀”和“水準儀”的功能,應該屬于 050599 其他

歸類為:0505 測繪儀器

應該屬于“0505測繪儀器”。

二、地質地震波形同向軸概念

地質地震 和 地質雷達 是不同的地球物理勘探方法

地質地震 是通過人工震源激發地震波 地震波被地下埋藏的地層界面反射回地面 ,然后由檢波器接收 并由地震儀器記錄下來,得到地震資料,地震資料由資料處理軟件處理后得到地震剖面。

在地震剖面上反映地下地質界面(聲阻抗界面)的在橫向能夠連續追蹤的峰值波形(或谷值)叫同相軸(不是同向軸)。

地質雷達是采用電磁波在地層介質中傳播的現象發展的地球物理勘探方法,勘探深度比較淺,主要用于表層調查。地質雷達的同相軸反映電磁阻抗界面,比如潛水面是很強的電磁阻抗界面。

三、在地質災害評價與其他地質調查中的應用

一、地質災害評價與監測

地質災害主要指崩塌(含危巖體)、滑坡、泥石流、巖溶、地面塌陷和地裂縫等。災害的地質評價與監測的目的是為了科學地確定地質體特征、穩定狀態和發展趨勢,為分析地質災害發生的危險性,論證地質災害防治的可行性和比選防治方案,最終確定是否要治理,采取躲避方案或實施防治工程對策提供依據。

地質災害勘查的任務與內容包括查明地質災害體的特征及其地質環境以及自然演化過程或人為誘發因素;分析研究地質災害體的成因機制;勘查地質災害體的形態、結構和主要作用因素等,并評價其穩定性;預測地質災害體的發展趨勢,評價其危險性;和進行防治工程可行性論證,提出防治工程規劃方案。

1.工程建筑場地的巖溶和洞穴的調查

對于機場、公路及大型工程建筑場地,地下洞穴、人防工程嚴重威脅著地面建筑的安全。由于地下洞穴或人防工程的存在,引起地表塌陷,地面建筑遭受破壞的現象時有發生,這一現象已引起人們的高度重視,如我國北方的一些城市,廢棄的人防工程已經成為城市建設的主要地質災害之一。因此,在工程地質勘查中采用物探方法查明埋藏地下的土洞、人防工程等不良地質現象,對合理地進行地面建筑設計和地基加固是十分必要的。

柳州機場在施工過程中發現有數處大小不一的土洞,為確保機場跑道的安全,在跑道位置進行了探地雷達探測。探測中采用了SIR-10型地質雷達,天線頻率為100 MHz。在跑道位置探查出三處洞穴異常。經開挖驗證,均發現有較大洞穴。洞穴在雷達圖像上的反映呈雙曲線形,圖5-4-1為土洞的地質雷達圖像,開挖驗證的實際洞穴如圖5-4-2。這一探測結果,排除了機場跑道的隱患。

溶洞是可溶巖的一種常見的地質現象,溶洞的存在對可溶巖區的工程建筑有較大的危害。當巖面覆蓋為易被沖蝕的滲透地層,且巖溶與上覆地層存在水力聯系時,這種水力聯系加速了巖溶發育。當巖溶頂部變薄不能支持上方地層負荷時,就會發生塌落。

圖5-4-3為廣州花都市某地的開口溶洞的探地雷達圖像。該處覆蓋層為細顆粒粉砂,有一定滲透性,其下為灰巖?;規r面附近巖溶發育,在灰巖面的地質雷達圖像中可見不規則強反射波。強反射波形成的區域內有一組周期短的弱反射波,其特征與上覆地層反射波特征類似,這表明灰巖中空洞已被上覆地層沖蝕的土體所充填。由于開口溶洞上方土體已遭沖蝕,因此,其反射波形態特征與周圍土層的反射波形態特征不同,表明上覆地層已受到擾動。擾動土層與充填溶洞構成了開口溶洞特征。這類溶洞使上覆地層承載力明顯降低,容易引起坍塌。

圖5-4-1 柳州機場洞穴的雷達圖像

圖5-4-2 開挖驗證的實際洞穴圖像

唐山市坐落在斷裂活動帶和隱伏巖溶區,在自然和人為因素影響下曾多次發生巖溶塌陷、地面變形等地質災害,給人民生命、財產安全和經濟建設帶來巨大危害。為了查明第四系覆蓋層厚度并確定基巖中溶洞與斷層位置。在唐山市第十中學操場,對曾經發生過巖溶塌陷并已作填石處理的地段開展了人工地震勘探??v波反射觀測采用1 m道間距,20 m偏移距,12 次水平疊加;橫波反射觀測參數采用1m道間距,20m偏移距,6次水平疊加。

圖5-4-3 某開口溶洞的地質雷達圖像

該區基巖為中厚微晶灰巖夾泥巖,埋深24.2 m。圖5-4-4為該測區縱波剖面圖,圖中,基巖反射波在已知塌陷坑處同相軸缺失,并有錯斷,反映了斷層破碎帶的形態。其他部位基巖反射波同相軸連續,是完整基巖的反映。

圖5-4-4 唐山市第十中學操場巖溶塌陷地震縱波反射剖面圖

2.地裂縫的物探勘查

西安市是地裂縫的多發區,近年來由于頻繁的構造運動及大量抽水等作用,地面及地下常出現地裂縫,嚴重地破壞了地面及地下的各種建筑設施。查明地裂縫的存在與否及地裂縫的位置、埋深、下延深度及其走向延伸,對西安地區的城市規劃和建設有重要意義。

為了證實地裂縫是基底斷裂構造向上延展活動的成因機制,開展了淺層高分辨率地震勘探,對展布在西安市的十條地裂縫帶布置了垂直地裂縫帶的地震測線,任務是探查地裂縫帶下是否有隱伏的第四紀斷層。

觀測系統為道間距5 m,最小偏移距220 m。儀器參數為:采樣間隔1 ms,記錄長度512 ms或1024 ms,低截頻率90 Hz。

在第四系平均厚度600 m的地層內,存在可連續追蹤的地震反射層有七組,按其反射時間由小到大標記為t1~t7,與鉆孔地質剖面對比,七組反射層與地質層位關系如表5-4-1。

表5-4-1 地震反射與地層關系表

地震勘查結果證明,跨越地裂縫帶的24條地震剖面,均存在有第四紀斷層,斷層面南傾,傾角較陡,南側的上盤下降,北側的下盤上升,其產狀和斷層特性與其上部地裂縫具有的正斷層式差異沉降特征是一致的,即以地裂縫為界,南側的上盤土體相對下沉,北側的下盤土體相對上升(圖5-4-5)。

隨著反射層t1~t6深度逐漸加深,各反射層所對應的斷距逐漸加大,而不是所有反射層的斷距都相等。這種現象在所有地震剖面上都存在,它反映了第四紀斷裂是基底斷裂繼承性發展,地裂縫是第四紀斷層在地表的出露。

由于地裂縫具有寬度小、埋深變化大和走向延伸較長等特點,因此,高密度電阻率法對地裂縫探測也有較好的效果。西安工程學院采用中間梯度法和高密度電法相結合對西安市地裂縫進行實驗研究。圖5-4-6是在已知地裂縫上的電探綜合剖面圖,由圖可見,視電阻率高值帶不僅反映出地裂縫的位置,而且也反映出其傾向和位錯動情況。該處探槽可見地裂縫F1、F2寬度分別為1 cm和2 cm??梢?,高密度電阻率法在地裂縫探測中有較高的分辨率。

地質雷達方法對地裂縫的探測也十分有效(圖5-4-7)。地層受剪切和張力作用產生裂縫,造成地層某一位置錯斷。垂直裂縫走向布置地質雷達測量,地裂縫在雷達剖面上表現為同相軸錯斷,其錯斷程度與裂縫發育程度有關,若裂痕沿橫向發育,裂縫內物質電磁波的吸收,也往往造成此部位反射波同相軸局部缺失,其缺失的范圍與裂縫發育范圍有關。

圖5-4-5 跨越地表地裂縫的反射地震剖面

圖5-4-6 地裂縫上的綜合勘測剖面圖

3.滑坡的監測與調查

在滑坡動態監測中,根據巖土的動力學特征的動態變化與地球物理場變化的相關性研究,可監測滑坡的形成與發展的動態過程,為災害的預測與防治提供參考資料。

滑坡是由巖石的突然崩塌或巖(土)體滑動造成,地質環境各異,成因各不相同。目前用于調查滑坡范圍及隨時間變化過程研究的地球物理方法較多,如用重力測量圈定滑坡范圍,自然電位監測滑坡動態,地溫測量監測與滑坡有關的地下水流動態。放射性、電法、地震、地質雷達測量也是滑坡調查中常用的方法。

圖5-4-7 地裂縫上的地質雷達剖面圖

此外,目前正在進行研究的有:利用巖石破碎時的聲發射與電磁脈沖輻射,采用聲波測量與電磁波測量監測滑坡動態;利用微動觀測監測滑坡體震動頻譜,確定滑坡滑動方向與滑動面蠕變等方法。

圖5-4-8 為電法和地震研究滑坡的實例,滑坡體靠近高加索,由砂質粘土組成,下部為泥巖風化殼。電測深結果將斜坡斷面分三層,上層為滑體(ρ1=13~29Ω· m),中層為風化泥巖,屬滑動面(ρ2=2~4Ω·m),下層是未風化泥巖組成滑床(ρ3=2~12Ω·m)。地震測量結果將滑坡分上、下兩層與滑體和滑動帶相對應(vP=340~360 m/s),下層與未風化泥巖頂部相符(vP=1360~1400 m/s),速度界面只有一個。在滑坡上部電法和地震的上界面十分吻合,而在滑坡底部速度界面高出電性界面,原因是未風化泥巖上部裂隙度增大造成,這種軟弱帶有可能產生新的滑坡。

圖5-4-8 根據地球物理研究結果綜合繪制的電性界面斷面圖

前蘇聯成功的采用氡氣測量判斷坡度的穩定性,圈閉滑坡體并監測滑坡發展的過程。圖5-4-9示出莫斯科列寧山滑坡地區氡氣測量結果,由圖可見,滑動地塊中氡的濃度通常高于周圍的穩定地段。因此,在不同時間系統進行氡氣測量將可監測滑坡從穩定地塊向活動地塊發展的過程,以及趨向穩定的轉變。

4.煤田陷落柱的調查

陷落柱是煤田開采中危害極大的地質災害之一,它通常是由于基底厚層灰巖中古溶洞的塌陷加上煤層蓋層塌落形成的。目前對陷落柱的調查中通常采用的地球物理方法有放射性、電法及人工地震等。

圖5-4-9 俄羅斯莫斯科列寧山一個滑坡上氡氣測量的結果

放射性方法調查陷落柱的根據是地下水在循環過程中由淺部氧化帶溶解的微量鈾,到達深部還原帶并沉淀在陷落柱的空隙帶中,使得鈾的含量高于周圍的巖石。鈾衰變為鐳后在還原條件下易溶于水,含鐳的地下水沿孔隙向上運移到達氧化帶又沉淀在土壤表面形成鐳暈,同時鈾、鐳衰變后形成氡氣異常,氡氣又衰變為210Po核素,因此,通過氡氣測量或210Po測量,可以間接調查陷落柱。通過氡氣測量或210Po測量,可以間接調查陷落柱。一般來講,210Po法在陷落柱上方的剖面曲線特征為馬鞍形,即陷落柱邊緣上異常曲線出現高峰值,而在陷落柱的中間210Po值較低,但仍然高出正常值。

河北大油村煤礦陷落柱調查以210Po測量為主,配合電測深、甚低頻電磁法、伽馬測量等地球物理方法,取得較好結果。礦區第四紀地層厚80~120 m,其中河卵石厚30~50 m,下部為二疊紀砂巖、粉砂巖、泥巖互層及煤層,礦區已發現兩個陷落柱,其中DX-1已由巷道控制,DX-2剛開始揭露。210Po測量結果如圖5-4-10所示,210Po脈沖數為60的異常值圈定的結果與已知陷落柱的范圍相符,并圈出新的異常區DX-2的范圍。

5.采空區的調查

采空區是由人類活動引起的地質災害之一,它對地面建筑和人身安全帶來嚴重隱患。為了研究對采空區的有效探測方法技術,近年來,煤炭科學研究總院和其他一些科研部門對此進行了大量的研究工作。研究成果表明,采用地震勘探、高密度電法、瞬變電磁、地質雷達、鉆孔彈性波CT、α卡法測量法等物探方法對探測采空區都具有一定的效果。由于每一種物探方法的應用都受到探測深度、地形地貌和巖土特征的影響,因此,各種方法都有其適應范圍,在實際應用中,應根據具體的地質情況和方法的有效性實驗后選擇適用的物探方法。

圖5-4-10 大油村煤礦210Po異常平面圖

高密度電阻率法和地質雷達對埋藏較淺的采空區具有較好的探測效果。石—太高速公路山西平定境內遇有礬土采空區,由于工程治理的需要,在施工前需查明采空區的空間分布和規模。探測區段上部為第四系覆蓋層,以粘土為主,電阻率為20~30Ω·m,厚度為0~10 m不等。底部為石炭系地層,以粉砂巖和泥巖為主,電阻率為50~100Ω·m,厚度較大。采空區由于坍塌、充填物松散、潮濕或充水,電阻率與圍巖相比差異較大,呈低阻特征。其中3號采空區由于采用旁柱式開采,截面積較大,其坍塌也更嚴重,埋深大約為20 m。

由于地形地表條件復雜,在高密度探測中采用了非正規測網,在120 m×100 m2,的范圍內共布設12條測線。點距2 m,極距a=(1~16)·x。圖5 4 11為3號采空區Ⅱ、Ⅲ測線的高密度測量結果圖。由圖可見,除地表局部地形和電性不均勻體形成的向上開口的“V”字型干擾異常外,在其深部(39點下方)有一低阻閉合圈異常,范圍較大,相應埋深也較大,與正常背景電阻率相差僅10Ω· m,在相鄰測線上連續出現類似異常,深度變化不大,該低阻異常由采空區形成,異常下方為采空區位置。

圖5-4-11 3號采空區Ⅰ、Ⅲ測線的高密度測量結果

地震勘探是采空區探測中應用廣泛的方法之一。由于采空區的存在,采空區周圍的應力平衡受到破壞,產生局部的應力集中,采空區圍巖在上覆巖層壓力作用下,經過一段時間后發生變形、破碎、位移和塌落,這使得采空區地震波的特征與未開采區圍巖地震波的特征相比發生較大的差異。圖5-4-12為徐州某煤礦煤層采空區實測地震剖面圖。

圖5-4-12 徐州某煤礦煤層采空區實測地震剖面圖

圖中可見,在采空區上地震剖面通常有如下特征:反射波速度明顯降低;反射波(組)突然中斷,跨過采空區后又重新出現;反射波的波形發生紊亂。

α卡法探測采空區是通過測量地表氡射氣含量大小,區分出地質異常及其異常性質。實驗研究表明,地表氡射氣含量與地下構造有著密切關系,巖層的裂隙、斷層破碎帶、巖石風化帶和松散帶是氡氣向地表運移的良好通道,這為氡射氣探測地質問題提供了地球物理條件。在老窖采空區大都存在著一定程度的塌陷冒落和裂隙,采空區上方至地表將會形成裂隙發育帶和松散帶,成為氡氣上移的通道,通道上方將出現α粒子強度的明顯異常,依此可推斷采空區的位置及范圍。圖5-4-13為徐州某煤礦煤層采空區區段土氡射氣探測剖面圖,強異常出現在采空區上方。

圖5-4-13 徐州某煤層采空區區段土氡探測剖面圖

6.地震預報中的地球物理方法

地震頻繁發生的地區一般是地殼的薄弱帶和活動帶。深大斷裂是幔源物質上侵和地球脫氣的主要通道,是地震活動的發源地。地震活動又派生出新的構造運動,構造運動產生的裂隙帶是氣體上移的通道。利用地表自由逸出的氣體溶解于水中及吸附于土壤中氣體的濃度變化來監測預報地震,是當前國內外廣泛采用的地震預報方法。研究證實,地震前后由于地應力的變化,可引起地下水中化學成分的變化,特別是水中氣體成分對地應力的反應十分靈敏。因此,水中氣體成分的變化可作為地震發生過程的重要標志,其中汞是對地震前兆響應最為靈敏的有效指標。

1985年11月21日,北京西郊妙峰山發生4.1級地震,震中距北京火車站汞監測井40 km;同年11月30日河北巨鹿發生5.1級地震,震中距汞監測井125 km。據北京火車站觀測井的水汞含量觀測,水中汞濃度有明顯變化,正常情況下,水中汞的平均值為14 ng/L。妙峰山地震臨震前汞濃度達到629.3 ng/L,為平均值的42倍(圖5-4-14)。

圖5-4-14 京西妙峰山、巨鹿地震前后北京火車站觀測井水中汞量變化曲線

由于大地震的發生大多與斷層活動有關,而活動斷層是地表與地殼深部聯系的通道,在活動斷層附近,通過土壤中氡和水中氡測量,可以從地表直接獲得深部構造活動的信息。在山東菏澤,1987年發生7.0級地震,據劉西林和華愛軍1984年進行的8條剖面氡測量結果,認為1987年的7.0級地震和1983年的5.9級地震是北西向定陶—成武斷裂和北東向的解元集—小留集斷裂的共軛斷裂發震,并確定了其產狀和活動程度。

二、在考古研究中的應用

地球物理方法在考古中發揮著重要的作用。通過地面高精度磁測對古遺址分布區內與回填土的磁性差異的探測,可了解遺址的位置、邊界形態及鐵磁性器物的賦存特征;通過電阻率法、激發極化法、自然電場法、地質雷達等手段了解不同巖土層及各種金屬器物和介質的電性差異;通過地震反射波和地震面波方法探測古墓與周圍介質的彈性差異,探索陵墓地宮的結構和深度的邊界及埋深;利用放射性勘測技術及天然氣態放射性元素氡濃度變化的測量,來了解某些陵墓區或古建筑遺址地下結構的分布。物探方法用于考古工作,可實現對古文化的無損探測,提高了考古發掘的準確度。例如中科院地球物理所采用地震面波、高精度磁測、大地電場巖性探測和地球化學測汞對三峽庫區故陵楚墓的探測,準確地確定出故陵楚墓的位置和分布形態,證實了所推測的古墓的存在,為三峽庫區文物搶救保護解決了重要的難題。

1.高精度磁測在考古中的應用

地面高精度磁測是對古墓、古文化的分布探測中最主要的地球物理方法之一。古遺存或古人類化石本身及所處地層的磁性、磁化率、磁化率各向異性、剩余磁化強度等與周圍環境存在的磁性差異是磁測考古的基礎。經有關學者研究得出如下結論:被火燒過的泥土制品、土壤、石頭等可獲得較強的磁性;有機質的腐爛使土壤獲得較高的磁性;人為翻動過的土壤或夯土、與周圍天然的沉積物之間有明顯的磁性差異;表5-4-2給出了不同考古材料的磁性參數。

表5-4-2 不同考古材料的磁性參數(據中國地質大學閻桂林)

考古對象的空間規模一般較小,形態復雜,埋深不一??脊艑ο笈c周圍物質間雖有一定的磁性差別,但磁性還是較弱,再加上人文干擾,所以,考古對象產生的磁異常,其特點是范圍小,強度低,梯度變化大,形態多樣,有時干擾嚴重。因而,在考古調查中必須采用高精度的質子磁力儀或光泵磁力儀。

地面磁測時測網的比例尺一般為1∶100~1∶200。儀器探頭距地面高度可為1 m至0.1 m。除觀測磁場強度ΔT外,還可觀測磁場的垂直梯度變化ΔTZ。河南新鄭某古墓的調查是磁法考古探測的成功實例之一。

該測區位于一戰國至漢代古墓葬區內,黃土覆蓋,土質均勻,地形平坦。墓葬區已經初步鉆探普查,磁力調查是作為詳查和核實。采用兩臺MP 4 型質子磁力儀,一臺用于地磁日變觀測。儀器探頭距地面高0.5 m。測網比例尺1∶200,線距2 m,點測1 m。觀測結果見圖5-4-15。由ΔT平面等值線圖可見,在已知墓葬A、B、C及大型陪葬坑上顯示出一定強度和輪廓明顯的磁異常。有些異常還勾繪出墓葬的形態及細節。如A異常清楚顯示該墓有一較長的南北向墓道,墓室南側有兩個小耳室。A墓引起的磁異常為20 nT左右。據其形態,考古工作者判定為漢代“甲”字型磚墓。B異常形態表明該墓為典型的“刀”字型磚墓。圖中黑粗線輪廓是根據磁異常推斷的結果。C異常較弱,對其墓的形態輪廓顯示不清楚,這表明該墓為一土坑墓,非磚結構。E、D異常反映的是兩個新發現的墓葬,沒有原始資料。陪葬坑的磁異常南、北部分有較大的區別,它表明坑內較多的陶器物品主要堆放在坑的南半部。該區這些異常推斷的遺存埋深為地下1~2m。實際鉆探資料證實了磁測結果的分析。

圖5-4-15 河南新鄭戰國至漢代某古墓的磁異常等值線圖

2.電法在考古中的應用

電法也是考古工作中常采用的地球物理方法。一般古墓多埋藏于第四系松散地層中,古墓上下及周圍應有厚度不等的青膏泥(粘土)填充,構成一個以厚層粘土包裹著的“古墓體”,此外,墓室有可能有地下水滲入。這就使得古墓與周圍地層存在一定的磁性與電性差異,為采用電法探測古墓提供了地球物理條件。

圖5-4-16是河南省某古墓地面磁測剖面平面圖。圖中各測線在22~26點和30~36點形成了兩個近EW向的條帶狀正異常(ΔZmax=53 nT),其間有一下降近20 nT的鞍部,其南、北、東三面均為負異常。結合地面情況推斷兩條正異常的鞍部為古墓位置,而南、北、東三面負異常為高差近20 m的人工開挖陡壁引起。

圖5-4-17是0號 剖面等視電阻率斷面圖。由圖可見,0線在三角點往西有ρs小于8Ω·m的極小值區,其他測線也有同樣反映。極小值出現在AB/2=40~100 m之間,以AB/2=65 m為中心部位。圖5-4-18是AB/2=65 m的等ρs平面圖。由該圖反映出ρs小于8Ω·m的極小值范圍為坐標原點往西11.2 m,坐標原點往南9.8 m。該范圍內ρs值均在7.2~7.65Ω· m內,且范圍外 ρs變化梯度較大。由此推斷 ρs小于8Ω·m的范圍為主墓葬的位置。本區電測深曲線類型以H型為主,按電性可分為三層:第一層為覆蓋層,第二層為“古墓體”,第三層為“古墓體”底板。由電測深曲線解釋得主墓頂部埋深為6.9 m,底板埋深為21 m。經挖掘驗證,基本與物探探測結果相符。

圖5-4-16 河南省某古墓磁測剖面平面圖

圖5-4-17 0線等ρs斷面圖

圖5-4-18 等ρs平面圖

3.地質雷達在古遺址探測中的應用

由于古遺址體與周圍介質在相對介電常數上存在有差異,為地質雷達方法探測古遺址提供了地球物理條件。對于埋深較淺的古遺址,采用地質雷達方法具有較好的探測效果。湖北大冶銅錄山古銅礦遺址是我國西周末期與春秋戰國時期的采礦遺址,該銅礦目前仍在開采,為了協調礦山開采與古銅礦遺址保護之間的關系,應用地質雷達探測了銅礦遺址的規模及其分布,取得了令人滿意的探測結果。

古銅礦遺址(稱老窿區)都形成于接觸破碎帶中相當于礦體的氧化次生富集帶中,鑒于當時開采的對象為高品位銅,因此老窿區發育地段首先要具備一定數量高品位銅礦可開采,二是當時用人力與較原始的工具挖掘,開采礦石的層位應該比較松軟,老窿區對應的是接觸破碎帶經強烈風化區,古礦坑內都有回填土充填,回填土與原狀土的差異明顯。因此調查中老窿區的探地雷達圖像應有如下特征:①由于地層風化是逐漸加深,因此原狀土風化層應為一組均勻密集的窄反射波,同時地層風化進程是同步的,因此這些反射波的同相軸平整且可橫向追蹤;②老窿區現由回填土充填,而回填土與原狀土差異增大,并且老窿區應處在礦石高品位地段,雖然銅已被開采,但鐵礦石仍保留,因此反射信號強度大;③原狀大理巖或矽卡巖由于物性相對均勻,因此反射界面相對較少,基本無明顯的反射信號。

圖5-4-19 老窿區的探地雷達圖像

圖5-4-20 地質雷達與勘探結果對照圖

圖5-4-19為老窿區的地質雷達圖像。由圖可見原狀土為密集的窄反射波,而老窿區中的回填土為強反射波,橫向變化大且同相軸難以追蹤,原狀土與回填土兩者差異明顯。根據雷達剖面圖像我們構筑了3個高程的老窿投影與勘探解釋進行對照。圖5-4-20為Ⅲ號遺址老窿投影的地質雷達與勘探結果對照圖。(a)是勘探結果,(b)是地質雷達解釋結果。由圖可見標高+53 m與+48 m老窿投影的地質雷達解釋結果與勘探結果基本一致,但標高+43 m的老窿區投影與雷達解釋結果有較大差異,這是因為在無鉆孔區地質人員往往采用外推法解釋。而這種解釋在不規則的老窿區會產生較大的誤差。

杭州雷峰塔始建于公元972年,于1924年倒塌,為了重建雷峰塔,浙江省考古所進行考古挖掘工作,為了確定雷峰塔是否存在有地宮,祝煒平等人開展了地質雷達方法探測工作,根據探測結果,明確了雷峰塔地宮的存在,提供了地宮的大致位置,為雷峰塔地宮的考古挖掘起到了指導作用。雷峰塔地宮探測中使用的地質雷達是瑞典瑪拉公司生產的RAMAC/GPR地質雷達,選用的工作天線的中心頻率為250 MHZ,在遺址上布置了四條呈“豐”字形地質雷達測線,測線間距為1.5 m,測點間距為0.03~0.05 m,采用剖面法測量。

圖5-4-21為雷峰塔塔基內的一條地質雷達探測剖面圖,橫坐標為1.0~2.8 m,縱坐標1.3~2.6 m處雷達波同相軸錯斷,橫坐標1.5~2.4 m,縱坐標2.6 m處有一雙曲線型拱起的反射波同相軸,塔基中心位置的雷達波圖像與周圍介質的雷達波圖像的差異明顯,因此,雙曲線型拱起異常應為地宮引起。地宮存在的范圍,測線1.0~2.8 m,埋藏深度1.3~3.1 m??脊磐诰虮砻?,地質雷達探測的結果是準確的,水平位置1.0~2.8 m,縱向深度1.3~2.6 m處雷達波異常反射由夯土層引起,地宮大小為0.9×0.9 m,高0.5 m。圖5-4-22為地宮挖掘后繪制的地質剖面圖。

圖5-4-21 塔基內一條雷達探測剖面圖

圖5-4-22 地宮挖掘后繪制的地質剖面圖

 


環保設備 備案號: 滇ICP備2021006107號-303 版權所有:蓁成科技(云南)有限公司     網站地圖
    本網站文章僅供交流學習,不作為商用,版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除。

怀孕巨大肚子的视频